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Abstract Docking and three dimensional quantitative
structure - activity relationship (3D-QSAR) studies have
been performed for protoporphyrinogen oxidase (PPO)
inhibitor 3H-pyrazolo[3,4-d][1,2,3]triazin-4-one analogues
which are potential herbicides to protect agricultural
products from unwanted weeds. The 3D-QSAR studies
have been carried out using shape, spatial, electronic and
molecular field descriptors along with a few structural
parameters. The chemometric tools used for the analyses
are genetic function approximation (GFA), partial least
squares (PLS) and genetic partial least squares (G/PLS).
The whole data set (n=34) was divided into a training set
(75% of the data set) and a test set (remaining 25%) on the
basis of K-means clustering technique applied on topolog-
ical, spatial and electronic descriptor matrix. Models
developed from the training set were used to predict the
activity of the test set compounds. All the models have
been validated internally, externally and by Y-
randomization technique. Docking studies suggest that the
molecules bind with a hydrophobic pocket of the enzyme
formed by some nonpolar amino acid (Ile168, Ile311,
Ile412, Met365, Phe65 and Val164) residues. The QSAR
studies suggest that for better activity the molecules should
have symmetrical shape in the 3D space. For better PPO
inhibitory activity, there should be a balance between the

electrophilic and nucleophilic characters of the inhibitors.
The charged surface area descriptors suggest that, the
positive charge distributed over a large surface area may
enhance the activity. Molecular field probes reflect that
increase in steric volume and positively charged surface
area may enhance the herbicidal activity.
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Introduction

Agriculture has played a very important role in the develop-
ment of human civilization. It is widely believed that
domestication of plants, allowed humans to settle in a place
and give up their previousmigrant life style. However, there are
certain threats like weeds, insects, fungus, pests etc. which can
cause reduction of the agricultural productivity. Among them,
weeds play a major role to restrict the agricultural efficiency
in modern civilization. Weeds are generally considered as
unwanted plants in human made settings like gardens,
agricultural areas etc. because (a) they might restrict light to
the desirable plants, (b) they can take the nutrients from soil
leaving the desired plant unfed and making them less
productive, (c) they can spread plant pathogens that infect
and diminish the quality of crop [1]. There should be a control
measure to protect the agricultural products from the above
mentioned harmful threats either chemically or biologically
(genetically). Genetic control is very complicated and
expensive, making chemical control the first choice. Herbi-
cides have been broadly classified into two groups according
to their activity. They are (1) contact herbicides (destroy only
the plant tissue in contact with the chemical) and (2) systemic
herbicides (chemicals translocated through the plant circula-
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tion system, either from foliar application down to the roots,
or from soil application up to the leaves) [2].

Computer-aided chemical design has been extensively
applied in the area of modern drug discovery, ecotoxicological
modelling and design of agrochemicals for its high efficiency
in the design of new compounds and optimization of lead
compounds, thus saving both time and economic costs in the
large-scale experimental synthesis and biological tests [3].
Quantitative structure-activity relationship (QSAR) helps us
to understand structure-activity relationship (SAR) in a
quantitative manner. It is one of the most important
applications of chemometrics, giving information useful for
the design of new compounds acting on a specific target.
QSAR attempts to find a consistent relationship between
biological activity or toxicity and molecular properties. Thus,
QSAR models can be used to predict the activity of new
compounds. QSAR models have been reported by different
groups of researchers for agrochemicals like herbicides,
fungicides and insecticides. Xi et al. [4] have performed
density functional theory based QSAR study for herbicidal
sulfonylurea analogues using general quantum chemical
descriptors. Hao Peng et al. [5] have performed molecular
docking and three-dimensional QSAR studies on the herbi-
cides 1-(substituted phenoxyacetoxy) alkylphosphonates
which bind to the E1 component of pyruvate dehydrogenase.
Li Zhang et al. [6] have developed a DFT-based QSARs
study of protoporphyrinogen oxidase inhibitor phenyl triazo-
linones. Jian-Guo Wang et al. [7] have performed CoMFA
and CoMSiA analyses of a new family of sulfonylurea
herbicides. Yang et al. [8] have synthesized a series of 3H-
[3,4-d][1,2,3] triazin-4-one derivatives which act as
systemic herbicides by inhibiting protoporphyrinogen oxi-
dase. The protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is
the last enzyme in the common tetrapyrrole biosynthesis
pathway before the pathway branches towards chlorophyll
(plant) and heme (animal) synthesis. These PPO inhibiting
herbicides cause peroxidative destruction of cellular mem-
brane and bleaching of plant tissues in the presence of light.
In contrast to the other herbicides, PPO inhibitors have
certain advantages like quick onset of action (necrosis within
24 hrs), long lasting effect and have a wide range of activity
[9]. Previously it was assumed that either a heterocyclic
structure with one or more nitrogen atoms or a polysubsti-
tuted benzene ring that links with the nitrogen atom of the
heterocyclic ring [10–16] may provide good herbicidal
activity. When the polysubstituted benzene ring was replaced
by a benzo-heterocycle ring, the corresponding compounds
(flumioxazin) also possessed excellent PPO inhibitory activity
and herbicidal activities [10]. Yang et al. [17] have designed
and synthesized a series of pyrazolo [5,1-d][1,2,3, 5] tetrazin-
4(3H)-one derivatives and evaluated their herbicidal activities
against Brassica campestris in a previous paper. For further
improvement Yang et al. have synthesized a series of 3H-

pyrazolo [3,4-d][1,2,3] triazin-4-one derivatives [8] which act
as systemic herbicides.

In the present paper, we have docked 3H- pyrazolo
[3,4-d][1,2,3] triazin-4-one derivatives into the enzyme
PPO isolated from Myxococcus xanthus to explore impor-
tant interactions between the ligands and the active site of
the PPO enzyme. Further we have performed the 3D QSAR
analysis to obtain a clear insight of the structure-activity
relationship of this class of compounds.

Materials and methods

The protoporphyrinogen oxidase inhibitory data (IC50) of
33 3H-pyrazolo [3,4-d] [1,2,3] triazin-4-one derivatives and
one reference compound (flumioxazin) [8] against corn
protoporphyrinogen oxidase (PPO) were converted to
reciprocal logarithmic values [pIC50=−logIC50] which have
been used for the QSAR analysis. There are four regions of
structural variations in the 3H-pyrazolo [3,4-d][1,2,3]
triazin-4-one compounds (Table 1). Subclass A of these
compounds differs from subclass B in the position of R1

substituent. Flumioxazin is structurally different from the
other compound and forms the subclass C (Table 1). The
structures of the compounds of subclasses A, B and C are
shown in Schemes 1, 2 and 3, respectively. The observed
and calculated PPO inhibitory activities are listed in Table 1.
The range of the PPO inhibitory activity values is quite
wide (3.98 log units). The herbicidal activity of these 34
compounds were also tested against the various herbs like
Brassica campestrics (Mustard), Amaranthus retroflexus
(Tumble weed), Digitaria sanguinalis (Crabgrass) and
Echinochloa crus-galli (Barn yard grass) by Yang et al.
[8] and satisfactory results were obtained.

Docking

Molecular docking is an application, wherein molecular
modelling techniques are used to predict how a protein
(enzyme) interacts with small molecules (ligand) [18]. The
ability of a protein (enzyme) to interact with small
molecules plays a major role in the dynamics of protein
which may enhance/inhibit its biological function. In our
current paper, we have performed docking of 3H-pyrazolo
[3,4-d][1,2,3] triazin-4-one derivatives into the active site of
protoporphyrinogen oxidase enzyme. The crystal structure
of the PPO enzyme (E.C. 1.3.3.4, 2IVD.pdb) has been
obtained from RCSB protein data bank (http://www.pdb.
org). We have worked on the PPO enzyme complexed with
acifluorfen isolated from Myxococcus xanthus. The PPO
enzyme is present as co-crystallised with flavin adenine
dinucleotide (FAD). There are two subunits (A subunit and
B subunit) of the enzyme. A subunit consists of 464 amino

138 J Mol Model (2010) 16:137–153

http://www.pdb.org
http://www.pdb.org


acid residues and B subunit contains 466 amino acid
residues. Both the subunits are complexed with acifluorfen.
We have docked the inhibitor molecules at the B subunit.
We have performed the docking studies by using LigandFit of
Receptor-ligand interactions protocol section of Discovery
Studio 2.1 [19]. Initially there was a pretreatment process for
both the ligands and the enzyme (PPO). For ligand
preparation, all the duplicate structures were removed and

options for ionization change, tautomer generation, isomer
generation, Lipinski filter and 3D generator have been set
true. For enzyme preparation, the whole enzyme has been
selected and hydrogen atoms were added to it. The pH of the
protein has been set in the range of 6.5 to 8.5. Then we have
defined the PPO enzyme as a total receptor and the active
site was selected based on the ligand binding domain of
acifluorfen. Then the preexisting ligand (acifluorfen) was
removed and freshly prepared ligand (3H-pyrazolo [3,4-d]
[1,2,3] triazin-4-one derivative) prepared by us was placed.
Then from the receptor- ligand interaction section LigandFit
was chosen. We have used the preprocessed receptor and
ligand as inputs. Dreiding was selected as the energy grid.
The conformational search of the ligand poses was
performed by Monte Carlo trial method. Torsional step
size for polar hydrogen was set at 10. The docking was
performed with consideration of electrostatic energy. Max-
imum internal energy was set at 10000 Cal. Pose saving
and interaction filters were set as default. Fifty poses were
docked for each compound. During the procedure of
docking, no attempt was made to minimize the ligand -
enyme complex (rigid docking). After completion of
docking, the docked enzyme (protein-ligand complex) was
analyzed to investigate the type of interactions. The 50
docking poses saved for each compound were ranked
according to their dock score function. The pose (confor-
mation) having the highest dock score was selected for
further analysis.

Descriptors

We have performed QSAR studies on the data set reported
by Yang et al. [8] with three-dimensional (shape, spatial,
electronic and molecular field) descriptors along with a few
structural descriptors. The categorical list [20] of descrip-
tors used in the development of QSAR models was reported
in Table 2.

Cluster analysis

The ultimate target of any QSAR modelling is that the
developed model should be strong enough to be capable of
making accurate and reliable predictions of biological
activities of new compounds. The models were cross
validated using leave-one-out method. However, internal
validation does not ascertain that the model will perform
well on a new set of data. For maximum cases, appropriate
external data set is not available for prediction purpose.
Hence, the whole data set is divided into a training set and a
test set or external evaluation set. In the present study the
models developed from a training set (subset of the original
set) were externally validated using a test set. Predictive
capacity of a model for new chemical entities is influenced

Table 1 PPO inhibitory activity (observed and calculated) of 33 3H-
pyrazolo [3,4-d][1,2,3] triazin-4-one derivatives and flumioxazin

Series Compound PPO inhibitory activity

Sl. Nos. Observed
[8]

Calculated

Eq.
(M1a)

Eq.
(M2a)

Eq.
(M3)

A 1 7.12 6.80 6.88 6.89

2 6.33 6.61 6.89 6.34

*3 6.31 6.61 7.16 6.24

4 5.71 5.86 5.43 6.22

5 6.49 6.52 6.60 6.20

6 6.10 6.19 6.73 6.32

7 7.85 6.96 6.98 7.59

*8 7.34 7.52 6.92 7.16

9 7.37 7.11 6.71 7.18

10 5.74 5.87 5.51 6.37

*11 5.41 6.22 5.31 6.51

12 6.63 6.62 7.00 6.59

13 6.28 6.42 6.64 6.58

14 7.94 7.78 7.35 7.49

15 7.19 7.87 7.27 7.32

16 8.02 7.87 7.85 7.94

*17 7.78 8.39 8.08 7.86

18 7.87 7.14 7.44 7.55

19 7.75 7.70 7.70 8.08

20 6.23 7.19 6.26 6.00

*21 6.12 6.50 6.58 6.27

22 6.53 6.26 6.49 7.20

23 6.61 6.03 6.58 6.35

24 6.32 5.88 6.58 5.94

25 6.55 5.96 6.39 6.19

*26 6.58 6.05 6.72 6.32

*27 6.64 7.85 6.98 7.72

28 6.09 6.46 6.75 6.43

B *29 4.51 5.31 5.46 4.55

30 5.27 5.35 5.74 5.11

*31 4.83 5.83 5.56 5.66

32 5.00 5.44 5.05 5.07

33 5.04 5.99 4.91 5.09

C 34 8.49 8.64 8.78 8.47

* Test set members
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by chemical nature of the training set molecules used for
development of the model [21–23]. In the actual case, the
test set molecules will be predicted well when these
molecules are structurally very similar to the training set

molecules. The reason is that the model has considered all
features common to the training set molecules. There are
different techniques available for division of the data set
into training and test sets like statistical molecular design,

Scheme 1
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self-organizing map, clustering, Kennard - Stone selection,
sphere exclusion, etc. [24]. In the present case we have
used clustering technique as the method for training set
selection. Cluster analysis [25] is a technique to arrange the
objects into groups.

In our present work, the total data set (n=34) was divided
into training set (n=25) and test (external evaluation) set
(n=9) (75% and 25% respectively of the total number of
compounds) based on clusters obtained from K-means
clustering [26] applied on topological, spatial and electronic
descriptor matrix. The whole data set was clustered into
three subgroups from each of which 25% of compounds
were selected as members of the test set. Serial numbers of
compounds under different clusters are shown in Table 3.

Molecular shape analysis

Molecular shape analysis (MSA) was used as a 3D
QSAR technique. In our study, the steps to perform
MSA were [27] —

1) Conformational analysis. The first operation in MSA is
the conformational analysis of the analogues. The
conformers were generated with the “optimal search
method” option followed by energy minimization.

2) Hypothesizing an active conformer. The aim of this step
is to select a structure that is present in the rate-limiting
step for the activity in a biological reaction. The

minimum-energy conformer (global minima) of the most
active compound 34 was taken as the active conformer.

3) Selection of a candidate shape reference compound.
Shape reference compound is the molecule that is used
when shape descriptors are calculated. MSA compares
all other molecules to the shape reference compound
(global minimum of compound 34) and provides
information about each comparison.

4) Performing pair-wise molecular superposition. Each
study molecule was aligned to the shape reference
compound using the maximum common sub graph
(MCSG) method to calculate the shape descriptors.

5) Measurement of molecular shape commonality. After
alignment, various shape descriptors, based on relative
shape similarity with the shape reference compound,
were calculated for each study molecule.

6) Other molecular descriptors. Determination of other
molecular features by calculating spatial, structural and
electronic parameters was done in addition to the shape
descriptors.

7) Construction of QSAR. QSAR equations were generat-
ed using genetic function approximation (GFA) with
linear option as the statistical tool.

For comparison, we have performed another MSA using
the docked conformations of the ligands instead of using
global energy minimum conformers.

Molecular field analysis

Molecular field analysis (MFA) [28] attempts to postulate
and represent the essential features of a receptor site from
the aligned common features of the molecules in 3D space.
MFA is a 3D-QSAR approach that computes the steric and
electrostatic interactions of a given series of molecules,
using probes within a regularly spaced grid. Molecular field
analysis (MFA) is a method for quantifying the interactionScheme 3

Scheme 2
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energy between a probe molecule and a set of aligned target
molecules in QSAR. Interaction energies measured and
analyzed for a set of three-dimensional structures can be
useful in establishing structure-activity relationships. To
generate an energy field (also known as a probe map), a
probe molecule is placed at a random location and then
moved about a target molecule within a defined three-
dimensional grid. At each defined point in the grid, an
energy calculation is performed, measuring the interaction
energy between the probe and the target molecule. Atoms
in the target molecule are fixed, so that intra-molecular
energy in the target is ignored. When a complete probe map
is calculated for each molecule in the target set, energy
values for each point in the grid can be reported in columns
added to the study table. For a set of structures for which
energy fields are generated, some or all the grid data points
can be used as descriptors in generating QSARs and
analyzing structure—activity relationships. The selection
of the independent variable columns was done based on
variances of the columns. MFA was performed using the

QSAR module of Cerius2 4.10 [20] version. Docked
conformations of the molecules were used for the analysis.
A regression analysis was performed using the G/PLS
method that combines the best features of genetic function
approximation (GFA) and partial least squares (PLS). A
rectangular field was generated using the probes H+, CH3,
CH3

−. A grid spacing of 2 Å was used, and fields with 720
points were generated. The energy cutoff was kept at −30 to
+30 kcal. The charge calculation method was set to
Gasteiger type. Alignment was done on the basis of the
common substructure (CSS) method. The CSS method
starts with defining a core model substructure to find a
match in all of the molecules under the study. The mutation
probabilities were kept at 5000 iterations. Smoothness (d)
was kept at 1.00. Initial equation length value was selected
as 4 and the length of the final equation was not fixed. All
the variables were scaled.

Genetic function approximation-multiple linear regression

Genetic algorithms are derived from an analogy with the
evolution of DNA [29]. The genetic function approximation
algorithm was initially anticipated by 1) Holland’s genetic
algorithm and 2) Friedman’s multivariate adaptive regression
splines (MARS) algorithm. In this algorithm a model is
represented as a one-dimensional string of bits. A distinctive
feature of GFA is that it produces a population of models (e.g.
100), instead of generating a single model, as do most other
statistical methods. Genetic algorithm makes superior models
to those developed using stepwise regression techniques
because it selects the basis functions genetically. Descriptors,
which were selected by this algorithm, were subjected to
multiple linear regression for generation of models. A “fitness
function” or lack of fit (LOF) is used to estimate the quality
of an individual or model, so that the best individual or model
receives the best fitness score. The error measurement term
LOF is determined by the following equation:

LOF ¼ LSE

1� cþd*p
M

� �2 : ð1Þ

In Eq. (1), ‘c’ is the number of basis functions (other
than constant term), ‘d’ is smoothing parameter (adjustable
by the user), ‘M’ is number of samples in the training set,
LSE is least squares error, and ‘p’ is total numbers of
features contained in all basis functions.

Once models in the population have been rated using the
LOF score, the genetic cross over operation is repeatedly
performed. Initially two good models are probabilistically
selected as parents and each parent is randomly cut into two
pieces and a new model (child) is generated using a piece from
each parent. After many mating steps, i.e. genetic crossover
type operation, average fitness of models in the population

Table 2 Categorical list of descriptors used in the development of
QSAR models

Category of
descriptors

Name of the descriptors

Shape DIFFV, COSV, Fo, NCOSV, ShapeRMS.

Electronic Dipole-mag, HOMO, LUMO, Sr.

Spatial RadOfGyration, Jurs_SASA, Jurs_PPSA_1,
Jurs_PNSA_1, Jurs_DPSA_1, Jurs_PPSA_2,
Jurs_PNSA_2, Jurs_DPSA_2, Jurs_PPSA_3,
Jurs_PNSA_3, Jurs_DPSA_3, Jurs_FPSA_1,
Jurs_FNSA_1, Jurs_FPSA_2, Jurs_FNSA_2,
Jurs_FPSA_3, Jurs_FNSA_3, Jurs_WPSA_1,
Jurs_WNSA_1, Jurs_WPSA_2, Jurs_WNSA_2,
Jurs_WPSA_3, Jurs_WNSA_3, Jurs_RPCG,
Jurs_RNCG, Jurs_RPCS, Jurs_RNCS,
Jurs_TPSA, Jurs_TASA, Jurs_RPSA,
Jurs_RASA, Shadow_XY, Shadow_XZ,
Shadow_YZ, Shadow_XYfrac, Shadow_XZfrac,
Shadow_YZfrac, Shadow_nu, Shadow_Xlength,
Shadow_Ylength, Shadow_Zlength, Area, Vm,
Density, PMI_mag.

Structural MW, Rotlbonds, Hbond acceptor,
Hbond donor.

Molecular field
(Probe used)

H+, CH3, CH3
-.

Table 3 Serial numbers of compounds under different clusters

Cluster number Serial number of compounds

1 3,4,5,6,7,8,9,12,13,14,15,23,24,25,26,29,34.

2 1,2,20,21,22,27.

3 10,11,16,17,18,19,28,30,31,32, 33.
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increases as good combinations of genes are discovered and
spread through the population. It can build not only linear
models but also higher-order polynomials, splines and
Gaussians. In our present work, linear terms have been used.
For the development of genetic function approximation
(GFA) models, Cerius2 4.10 version [20] has been used.
The mutation probabilities were kept at 5000 iterations.
Smoothness (d) was kept at 1.00. Initial equation length
value was selected as 4 and the length of the final equation
was not fixed.

Partial least squares

PLS regression is a technique that generalizes and com-
bines features from principle component analysis (PCA)
and multiple regression. PLS is a useful technique when the
number of factors is large and they are highly collinear. For
PLS [30, 31], “leave-one-out” method was used for cross-
validation to obtain the optimum number of components. In
the case of PLS analysis, based on the standardized
regression coefficients, the variables with smaller coeffi-
cients were removed from the PLS regression, until there
was no further improvement in Q2 value, irrespective of the
components. It gives a statistically more robust solution
than MLR. To avoid overfitting, a strict test for the
significance of each consecutive PLS component is
necessary and then stopping when the components are
non-significant. This ensures that the QSAR equations are
selected based on their ability to predict the data rather than
to fit the data. In the present paper, PLS analysis has been
done to remove the intercorrelation problem with the
descriptors selected by GFA-MLR technique.

G/PLS

Genetic partial least squares (G/PLS) [20, 30, 31] is a
statistical method that combines the best features of genetic
function approximation (GFA) and partial least squares
(PLS). Both of these methods are valuable statistical
techniques for QSAR modelling where the number of
descriptors is more than the number of samples. Genetic
function approximation is used to select the appropriate
variables to be used in the development of a model. It is
followed by PLS regression as a fitting technique to weigh
the relative contribution of the selected variables in the final
model. G/PLS retains the ease of interpretation of GFA by
back transforming the PLS components to the original
variables. There is no chance of over-fitting of the model.

Validation methods

The robustness of the models should be verified by using
different types of validation criteria. For validation of

QSAR models usually four strategies [32] are adopted: (1)
internal validation or cross-validation, (2) validation by
dividing the data set into training and test compounds, (3)
data randomization or Y-scrambling, (4) true external
validation by application of model on new external data.
However, due to the lack of true external evaluation set, the
total data set was divided into an internal evaluation
(training) set and external evaluation (test) set. So, we have
performed only the first three validation techniques. Most
of the QSAR modelling methods implement the leave-one-
out (LOO) or leave-many-out (LMO) cross-validation
procedures, which are internal validation techniques. The
outcome from the cross-validation procedure is cross-
validated R2 (LOO-Q2 or LMO-Q2) which is used as a
criterion of both robustness and predictive ability of the
model. In this paper, we have performed the leave-one-out
validation method as the internal validation tool. Cross-
validated squared correlation coefficient R2 (LOO-Q2) is
calculated according to this equation.

Q2 ¼ 1�
P

Yobs trainingð Þ � Ypred trainingð Þ
� �2
P

Yobs trainingð Þ � Y training

� �2 ð2Þ

In Eq. (2), Y training represents average activity value of
the training set while Yobs(training) and Ypred(training) represent
observed and predicted activity values of training set
compounds, respectively. Often, a high Q2 value (Q2>0.5)
is considered as a proof of high predictive ability of the
model [33].

Models are generated based on training set compounds
and predictive capacity of the models is judged based on
the predictive R2 (Rpred

2) values calculated according to the
following equation [34]:

R2
pred ¼ 1�

P
Yobs testð Þ � Ypred testð Þ
� �2

P
Yobs testð Þ � Y training

� �2 : ð3Þ

In Eq. (3), Ypred(test) and Yobs(test) indicate predicted and
observed activity values respectively of the test set
compounds and Y training indicates the mean activity value
of the training set compounds. The value of Rpred

2 for an
acceptable model should be more than 0.5.

Further statistical significance of the relationship be-
tween the PPO inhibitory activity and chemical structure
descriptors was obtained from randomization (Y-randomi-
zation) of the developed models. The test was done by
repeatedly scrambling the activity values to generate QSAR
models and then comparing the resulting scores with the
score of the original QSAR model generated from non-
randomized activity values. If the score of the non-random
QSAR model is significantly better than that of the random
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models then that model should be considered as a
statistically robust model [35].

Software

MINITAB [36] was used for linear regression and partial
least squares methods. Cerius2 version 4.10 [20] was used
for GFA, G/PLS and MFA analyses. SPSS [37] were used
for cluster analysis and intercorrelation matrix of the
descriptors. LigandFit of the receptor-ligand interactions
section available under Discovery Studio 2.1 [19] was used
to dock the inhibitor molecules into the active site of the
enzyme PPO.

Results and discussion

Docking

In the present study, to understand the interactions
between the protoporphyrinogen oxidase (PPO) and its
inhibitors and to explore their binding mode, docking
study was performed using LigandFit of receptor-ligand
interactions section available under Discovery Studio 2.1.
Docking studies yielded crucial information concerning
the orientation of the inhibitors in the binding pocket of
the enzyme (PPO). The ligand-enzyme interaction analysis
shows that Ile168, Ile311, Ile412, Met365, Ser64, Phe65,
Val164 and Asn449 are the important residues present at
the active site and are the main contributors to the
receptor-ligand interaction. Non-polar amino acid residues
(Ile168, Ile311, Ile412, Met365, Phe65 and Val164) form
a hydrophobic pocket to which the inhibitors bind. It has
been observed that, for better herbicidal activity, four
amino acid (Ile168, Ile311, Ile412, and Met365) residues
should optimally interact with the substituted pyrazolo-
triazine-4-one ring system. In case of compound 10
(Fig. 1), the pyrazolo triazin-4-one ring structure is far
away from Ile311 and Ile412 residues. Thus the pyrazolo
triazin-4-one ring of that molecule does not fit properly in
the hydrophobic pocket and there is a bump between the
oxygen atom of benzo-morpholine ring system and
the amino acid residue Met365. This bump may disturb
the optimal position of the molecule in the pocket and thus
it hinders the interaction with the amino acid residues and
thus its herbicidal activity is poor. In case of compound 14
(Fig. 2), all the four important amino acids (Ile168, Ile311,
Ile412, and Met365) are close to the substituted pyrazolo-
triazin-4-one ring. For compound 14, the above mentioned
ring system fits well in the pocket of the enzyme. A
hydrogen bond has been formed between the fluorine
atom of substituted phenyl ring and the hydrogen atom of
the flavin adenine dinucleotide (FAD) present as a co-

enzyme in the PPO enzyme. The oxygen atom of the
morpholine ring system of compound 11 (Fig. 3) forms a
hydrogen bond with the hydrogen atom of the FAD
molecule. This hydrogen bond can help the inhibitor to
place itself within the hydrophobic pocket of the enzyme.

Fig. 1 Docked conformation of compound 10 along with the
important amino acid residues

Fig. 2 Docked conformation of compound 14 along with the
important amino acid residues
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However, two bumps (intermolecular) have been formed
which indicate the inhibitor molecule is not fitted well in
the hydrophobic pocket. One bump is present between the
allyl group of the benzomorpholine ring of compound 11
and the amino acid residue Met365 and another bump
(intramolecular) is present between a hydrogen of the
phenyl ring and the carbon of the allyl group. The activity
of compound 11 is low due to the presence of these two
bumps though the compound forms a hydrogen bond. In
the case of compound 30 (Fig. 4), the position of the R1

substitution has changed from that of the previous
compounds. The allyl group present at the pyrazolo-
triazin-4-one ring system has formed a bump with the
important amino acid residue Met365. The position of
the allyl substitution may hinder the placement of the
inhibitor molecule in the hydrophobic cavity. Thus the
activity of this molecule is low. In case of compound
34 (Fig. 5), the pyrazolo-triazin-4-one ring system has
been replaced by tetrahydroisoindole-1,3-dione ring struc-
ture and the new ring system has optimally interacted with
the four important non-polar amino acid (Ile168, Ile311,
Ile412 and Met365) residues and this molecule posses
very high activity. Thus we can say that, for better
herbicidal activity pyrazolo-triazin-4-one ring can be
replaced by a tetrahydroisoindole-1,3-dione ring system.
In the case of the pyrazolo-triazin-4-one ring system, five
nitrogen atoms are present while in the case of the
tetrahydroisoindole-1,3-dione ring structure only one

Fig. 4 Docked conformation of compound 30 along with the
important amino acid residues

Fig. 3 Docked conformation of compound 11 along with the
important amino acid residues

Fig. 5 Docked conformation of compound 34 along with the
important amino acid residues
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nitrogen atom is present. The presence of fewer number of
nitrogen atoms in the case of the latter system increases
the positively charged surface area which may increase the
PPO inhibitory activity.

Molecular electrostatic potential surface (wire mesh) of
the energy minimized geometry (calculated at AM1 level
using Chem 3D) [38] of compound 29 shows (Fig. 6) that
the pyrazolo-triazine-4-one ring system forms a negatively
charged surface. This occurs due to the presence of more
nitrogen atoms in the above mentioned ring system. Hence,
positively charged surface is less, and the PPO inhibitory
activity (4.51) of this compound is also less. However, in
the case of compound 34 (Fig. 7) tetrahydroisoindole-1,3-
dione ring structure forms a positively charged surface as
fewer number of nitrogen atoms are present there. Here,
positively charged surface area is large, and the PPO
inhibitory activity (8.49) of this compound is also high. So,
better PPO inhibitory activity, the pyrazolo triazine-4-one ring
system can be replaced by tetrahydroisoindole-1,3-dione ring
structure.

We have also validated the ligand binding process by
docking the most active (compound 34) inhibitor molecule
with the enzyme PPO using other two docking tools
LibDock and CDOCKER of receptor-ligand interactions
section available under Discovery Studio 2.1 [19]. The
docked geometries of the most active compound obtained
from LibDock and CDOCKER tools have been shown in
Fig. S1 and Fig. S2 (Supplementary Materials), respectively.
The docked geometries obtained from the latter two docking
tools were very much close to that obtained from LigandFit
tool of Discovery Studio 2.1. The important amino acids
(Ile168, Ile311, Ile412, Met365, Ser64 and Phe65) in the
docked geometries obtained from LibDock and
CDOCKER tools interact with the ligand in a similar
pattern as they do in the case of LigandFit. This supports
that, our docking process is robust and reproducible. We
have performed another type of validation study to
determine whether our docking process is robust or not.

We have docked acifluorfen (the original co-crystallized
ligand) with the enzyme PPO and the analyzed the
docked geometry with the original crystal structure (E.
C. 1.3.3.4, 2IVD.pdb) obtained from protein data bank.
This analysis shows that, the amino acid residues present
close to the inhibitor molecule are the same as in the
enzyme-inhibitor complex of the protein data bank. This
suggests that, our docking process is reproducible.

Molecular shape analysis

We have performed a three dimensional quantitative
structure-activity relationship to obtain the information
about the effect of shape, spatial arrangement of atoms in
three dimensional space and charge distribution of the
substituents on the biological activity. This study was
conducted using MSA descriptors along with additional

Fig. 6 Molecular electrostatic
potential surface (wire mesh) of
the energy minimized geometry
of compound 29 (blue points in
the surface indicate negatively
charged areas, red points indi-
cate positively charged areas)

Fig. 7 Molecular electrostatic potential surface (wire mesh) of the
energy minimized geometry of compound 34 (blue points in the
surface indicate negatively charged areas, red points indicate posi-
tively charged areas)
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descriptors like spatial and electronic parameters and a few
structural descriptors. Figure 8 shows the aligned geometry
of the training set compounds used in MSA.

Initially we have performed the MSA by generating
conformers using Cerius 2 version 4.10 software as detailed
in materials and methods section. Models were generated
with shape, spatial and electronic descriptors using genetic
function approximation with linear option as the statistical
tool. The mutation probability was kept at 5000 iterations.
In case of GFA linear technique, the following equation
was obtained with acceptable leave-one-out (LOO) internal
variance (Q2) and external predicted variance (Rpred

2).

pI50 ¼100:940ð�19:960Þ � 5:844ð�1:296ÞLUMO

þ 7:022ð�1:868ÞHOMO� 4:599ð�0:961ÞRadofGyration
þ 0:918ð�0:190ÞRotlbonds
þ 2:581ð�0:617ÞJurs FPSA 2

nTraining ¼ 25;R2 ¼ 0:801;R2
a ¼ 0:749;

F ¼ 15:3ðdf 5; 19Þ;Q2 ¼ 0:606;

PRESS ¼ 8:757; nTest ¼ 9;R2
pred ¼ 0:767; r2 ¼ 0:864;

r20 ¼ 0:858; r2m ¼ 0:797:

ðM1Þ
The above model could explain 74.9% of the variance

(adjusted coefficient of variation). The leave-one-out
predicted variance was found to be 60.6%. The predictive
potential of this model was determined by predicted R2 of
the test set compounds and it was found to be 0.767. The
squared correlation coefficient between the observed and
predicted activity of the test set compounds was 0.864. The
squared correlation coefficient between the observed and
predicted activity of the test set compounds, setting
intercept to zero, was found to be 0.858.

Using the standardized variable matrix for regression,
the significance level of the descriptors was found to be of

the order: LUMO, HOMO, RadofGyration, Rotlbonds and
Jurs_FPSA_2. However, in the above model, some varia-
bles are highly intercorrelated (LUMO, HOMO and
RadofGyration, Rotlbonds) though the equation shows
acceptable internal and external validation statistics. To
eliminate the problem of intercorrelation, we have per-
formed partial least squares (PLS) using descriptors
selected by the GFA technique. The PLS model is free
from intercorrelation problem. In case of PLS technique,
the following equation was obtained with acceptable leave-
one-out (LOO) internal variance (Q2) and external predicted
variance (Rpred

2).

pI50 ¼65:689� 3:439LUMO þ 3:541HOMO

� 5:778RadofGyration þ 1:119Rotlbonds

þ 3:257Jurs FPSA 2

nTraining ¼ 25;R2 ¼ 0:761;R2
a ¼ 0:713;F ¼ 16ðdf 4; 20Þ;

Q2 ¼ 0:545;

PRESS ¼ 10:120; nTest ¼ 9;R2
pred ¼ 0:601; r2 ¼ 0:776;

r20 ¼ 0:775; r2m ¼ 0:758:

ðM1aÞ
Though the external validation statistics of Eq. (M1a)

is slightly inferior to Eq. (M1), the latter (M1a) does not
suffer from the problem of high intercorrelation. LUMO is
the energy of lowest unoccupied molecular orbital. This
represents the electrophilicity of a molecule. Molecules
with low LUMO energy can accept electrons more easily
than those having high LUMO energy. LUMO has
unfavourable contribution towards the herbicidal activity
as evidenced by the negative regression coefficient.
Another model not reported here, suggests that if the
value of LUMO energy is greater than 1.812 eV then it
shows negative contribution and vice versa. This can be
explained by the compounds 7, 15, 16, 30, 32–33. In case
of compounds 15, 7 and 16 herbicidal activity has
increased as the value of LUMO is enhanced. However,
when the value of LUMO crosses the threshold value
(1.812 eV) then further increase in LUMO energy leads to
reduction of activity as seen in case of compounds 30, 32–
33. Thus, for better herbicidal activity, the molecule
should be highly electrophilic.

HOMO is the energy of highest occupied molecular
orbital. Molecules with high HOMO energy can easily
donate electron and it represents nucleophilicity of a
molecule. HOMO has favourable contribution towards the
herbicidal activity as evidenced by the positive regression
coefficient. So, for better herbicidal activity, the numerical
values of HOMO should be high. This can be explained by
the compounds 4, 14 and 16. In case of compound number
4 the HOMO energy (−10.517 eV) is less than that ofFig. 8 Aligned geometry of the training set members used in MSA
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compound 14 (−10.057 eV). Thus the activity of com-
pound 4 (5.71) is quite less than that of the compound 14
(7.94). As the HOMO energy of compound 16 is very
higher (−9.953 eV) than the above mentioned two
compounds, so the herbicidal activity (8.02) of this
compound is also higher than those. As the above
mentioned two descriptors have regression coefficients of
opposite sign, so there must be a balance between them. In
Eqs. (M1) and (M1a), the HOMO term balances the
negative coefficient of LUMO. For better PPO inhibition
activity, there should be a balance between the electro-
philic and nucleophilic character of the inhibitors.

Radius of gyration (Å) is a measure of the size of an
object, a surface, or an ensemble of points. It is calculated
as the root mean square distance of the objects’ parts from
either its centre of gravity or an axis. This can be calculated
by the following equation:

RadofGyration ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX x2i þ y2i þ z2ið Þ

N

� �s
: ð4Þ

Here, N is the number of atoms and x, y, z are the atomic
coordinates relative to the centre of mass. It has unfavourable
contribution towards the herbicidal activity as evidenced by
the negative regression coefficient. This reflects that the shape
of the molecules plays an important role for herbicidal activity.
For better herbicidal activity, the molecules should have a
symmetrical shape, i.e. spherical shape. This can be explained
taking examples of the compounds 6 and 7. As compound 6
is less symmetrical in shape than compound 7, its radius of
gyration possesses higher value than that of compound 7. For
this reason activity of compound 7 is quite higher than
compound 6. There is another example of compounds 15 and
17. Compound 17 possesses more symmetrical shape than
compound 15, so its radius of gyration is less than compound
15 and herbicidal activity is higher than compound 15.

Rotlbonds are the counts the number of bonds in the current
molecule having rotations that are considered to be meaningful
for molecular mechanics and it reflects the flexibility of a
molecule. Rotlbonds has favourable contribution towards the
herbicidal activity as evidenced by the positive regression
coefficient. This can be explained by the following pairs of
examples. In case of compound 13, number of rotable bonds
are less than that of compound 14, so the activity of
compound 14 is also high. This effect is also observed in
the case of compounds 19 and 20 and compounds 17 and 21.

Jurs_FPSA_2 is fractional charged partial positive
surface area. It can be calculated by the total charge
weighted positive surface area (PPSA-2) divided by the
total molecular solvent accessible surface area (SASA).

Jurs FPSA 2 ¼ PPSA 2

SASA
ð5Þ

It has favourable contribution towards the herbicidal
activity. This implies that increase in the total positive
charge may enhance the activity. For example, in case of
compound 15, chloro substitution at R3 position may
reduce the total positive charge. Thus in compound 15 the
value of Jurs_FPSA_2 is less than that of the compound 16,
and accordingly the activity of compound 16 is higher than
compound 15.

Further we have performed molecular shape analysis
using docked conformers obtained from Discovery Studio
2.1. Figure 9 shows the aligned geometry of docked
conformers of the training set compounds used in MSA.
Model has been generated with shape, spatial and electronic
descriptors using genetic function approximation with
linear option as the statistical tool. The mutation probability
was kept at 5000 iterations. In case of GFA linear technique
the following equation was obtained with acceptable leave-
one-out (LOO) internal variance (Q2) and external predicted
variance (Rpred

2).

pI50 ¼15:887ð�1:655Þ � 0:005ð�0:001ÞPMI mag

þ 0:440ð�0:070ÞJurs WPSA 3� 1:673ð�0:334ÞLUMO

� 2:706ð�0:839ÞShadow nu

þ 0:008ð�0:008ÞDIFFV
nTraining ¼ 25;R2 ¼ 0:829;R2

a ¼ 0:784;F ¼ 18:4ðdf 5; 19Þ;
Q2 ¼ 0:628;

PRESS ¼ 8:259; nTest ¼ 9;R2
pred ¼ 0:788; r2 ¼ 0:833;

r20 ¼ 0:823; r2m ¼ 0:750:

ðM2Þ

Fig. 9 Aligned geometry of docked conformers of the training set
members used in MSA
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Using the standardized variable matrix for regression,
the significance level of the descriptors was found to be
of the order: PMI_mag, Jurs_WPSA_3, LUMO, Shad-
ow_nu and DIFFV. However, in the above model, the
variables are highly intercorrelated (PMI_mag, Jurs_
WPSA_3 and DIFFV) though the equation shows accept-
able internal and external validation statistics. To obviate
this type of intercorrelation, we have performed partial
least squares technique (PLS) using descriptors selected
by GFA technique. The PLS model is free from intercor-
relation problem. In case of PLS technique the following
equation was obtained with acceptable leave-one-out
(LOO) internal variance (Q2) and external predicted
variance (Rpred

2).

pI50 ¼15:875 � 0:005PMI mag þ 0:438Jurs WPSA 3

� 1:663LUMO� 2:675Shadow nuþ 0:009DIFFV

nTraining ¼ 25;R2 ¼ 0:829;R2
a ¼ 0:795;F ¼ 24:3ðdf 4; 20Þ;

Q2 ¼ 0:668;

PRESS ¼ 7:369; nTest ¼ 9;R2
pred ¼ 0:762; r2 ¼ 0:836;

r20 ¼ 0:822; r2m ¼ 0:737:

ðM2aÞ

PMI_mag is the moment of inertia, the resultant of the
moment of inertia of three axes, which are calculated for a
series of straight lines through the centre of mass. These are
associated with the principal axes of the ellipsoid. PMI_mag
has unfavourable contribution towards the herbicidal activity.
In case of compounds 29–33, the position of R1 substituent
is different from the compounds 1–28. For this reason the
value of PMI_mag is higher in the former compounds than
that of the latter ones. Thus, the activity is less in case of
compounds 29–33.

Jurs_WPSA_3 is the surface weighted charged partial
positive surface area. It can be calculated from the atomic
charge weighted positive surface area (PPSA_3) multiplied
by the total solvent-accessible surface area (SASA) and
divided by 1000.

Jurs WPSA 3 ¼ PPSA 3�SASA
1000

ð6Þ

It has favourable contribution towards the herbicidal
activity. This implies that increase in the partial charges
over all positively charged atoms and the total solvent
accessible surface area enhance the activity. In the case of
compound 16, the value of Jurs_WPSA_3 is high and the
PPO inhibitory activity (8.02) is also high. For better
activity, a compound should contain positive charge
distributed over a large surface area. This has already been
suggested by the molecular electrostatic potential surface of
compounds 29 (Fig. 6) and 34 (Fig. 7).

Shadow_nu is the ratio of largest to smallest dimension.
It has unfavourable contribution to the herbicidal activity as
it has negative regression coefficient. If the compound has a
symmetrical shape considering all three directions then the
value of Shadow_nu will be smaller and herbicidal activity
will rise. This can be explained taking the examples of
compounds 19 and 28. As compound 19 is more symmet-
rical in shape than compound 28, the former has more
herbicidal activity than the latter.

DIFFV is the difference between the volume of the
individual molecule and the volume of the shape reference
compound. It has favourable contribution towards the
herbicidal activity. When the values of NCOSV of two
compounds are similar, then an increase in the value of
DIFFV may lead to an increase in the activity as in the case
of compounds 2, 16 and compounds 1, 22.

Molecular field analysis

Molecular field analysis (MFA) is a method for quantifying
the interaction energy between a probe atom/molecule and a
set of aligned target molecules in QSAR. Interaction energies
measured and analyzed for a set of 3D structures can be useful
in establishing structure-activity relationships. Figure 10
shows the aligned geometry of docked conformers of the

Fig. 10 Aligned geometry of docked conformers within the MFA grid
showing important interaction points of the training set members used
in MFA
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training set compounds used in MFA. The mutation
probability was kept at 5000 iterations. In the case of G/
PLS linear technique the following equation was obtained
with satisfactory leave-one-out (LOO) internal variance (Q2)
and predicted variance (Rpred

2).

pI50 ¼6:244þ 0:045ðCH�
3 =404Þ þ 0:020ðCH3=210Þ

� 0:044ðCH�
3 =468Þ � 0:021ðCH�

3 =654Þ
� 0:027ðHþ=339Þ � 0:008ðCH�

3 =477Þ
nTraining ¼ 25;R2 ¼ 0:890;R2

a ¼ 0:874;F ¼ 56:4ðdf 3; 21Þ;
Q2 ¼ 0:813;

PRESS ¼ 4:152; nTest ¼ 9;R2
pred ¼ 0:726; r2 ¼ 0:758;

r20 ¼ 0:757; r2m ¼ 0:734:

ðM3Þ

H+/339 indicates the interaction of the electrostatic probe
at grid point number 339 with the molecules. It has
unfavourable contribution to the activity. Interaction with
H+ at the grid point 339 is possible when a long chain
substituent especially with electronegative atom is present
at the R4 position. This can be encountered in case of
compounds 25 and 26. They have long chain substituent
with electronegative (chlorine) atom at the R4 position, so
their activity is less. The term CH3/210 represents the
interaction of the steric probe at grid point 210 with the
molecules. It has a positive effect on the herbicidal activity.
Significant interaction at this grid point occurs only in case
of high steric volume of the substituents at the R3 and R4

substitution positions. This implies that, for better herbi-
cidal activity, surface area should be greater, i.e. bulky
substituents at R3 and R4 position may increase the activity.
The term CH3

−/404 indicates the interaction of the
electronegative probe at grid point 404 with the molecules.
It has favourable contribution to the herbicidal activity. For
better herbicidal activity, the triazine-4-one ring system
should be situated far from this grid point. However, the
position of the triazin-4-one ring system in 3D space is
dependent on the position of the substituent at R1 of the
pyrazole ring fused with triazine ring system. The term
CH3

-/468 represents the interaction of the electronegative
probe at grid point 468 with the molecules. It has
detrimental effect on the activity. This is dependent on the
position of the substituent at R1 of the pyrazole ring fused
with triazine ring system. Due to this interaction, the
activity of compounds 29–33 was lower than other
compounds. The terms CH3

-/477 and CH3
-/654 represent

the interactions of the CH3
− probe at the grid points 477

and 654 respectively with the molecules. Both terms have
unfavourable contribution towards the herbicidal activity.
To avoid these interactions, either the pyrazolo-triazin-4-
one ring system should be far away from these points or the
tr iazin-4-one ring system can be replaced by

tetrahydroisoindole-1,3-dione ring system for better activity
(compound 34). Figure 11 shows the most active compound
(compound 34) within the MFA grid showing the important
interaction points.

Additional test on external validation

The models were also subjected to the test for criteria of
external validation as suggested by Golbraikh and Tropsha
[39]. To know predictive potential of the models, squared
correlation coefficient values between the observed and
predicted values of the test set compounds with intercept
(r2) and without intercept (r0

2 ) were calculated. Interchange
of the axes gives the value of r′20. According to Golbraikh
and Tropsha [39], models are considered acceptable, if they
satisfy all of the following conditions:

(1). Q2>0.5
(2). r2>0.6
(3). (r2−r02)/r2<0.1 or (r2−r′20)/r2<0.1
(4). 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15.

When the observed values of the test set compounds
(Y-axis) are plotted against the predicted values of the
compounds (X-axis) setting intercept to zero, the slope of
the fitted line gives the value of k. Interchange of the axes
gives the value of k′. A list of values of different validation
parameters defined above for different models have given
in Table 5.

It has been previously shown [40] the R2
pred may not be

sufficient to indicate external predictivity of a model. The
value of R2

pred is mainly controlled by
P

Yobs testð Þ�
�

Y trainingÞ2, i.e. the difference between observed values of
test set compounds and mean observed activity values of
training data set. Thus, it may not truly reflect the predictive
capability on a new dataset. Besides this, the squared
regression coefficient (r2) between observed and predicted
values of the test set compounds does not necessarily mean
that the predicted values are very near to observed activity
(there may be considerable numerical difference between
the values though maintaining an overall good intercorre-
lation). So, for better external predictive potential of the
model, a modified r2 (r2m(test)) was introduced by the
following equation [40]:

r2m testð Þ ¼ r2* 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q� �
: ð7Þ

In Eq. (7), r0
2 is squared correlation coefficient

between the observed and predicted values of the test set
compounds with intercept set to zero. The value of r2m(test)

should be greater than 0.5 for an acceptable model. The
values of r2m(test) for the different models have been
reported in Table 4.
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Initially the concept r2m was applied only to the test set
prediction [40], but it can also be applied for the training set
if one considers the correlation between observed and
leave-one-out (LOO) predicted values of the training set
compounds [41]. More interestingly, this can be used for
the whole set considering LOO-predicted values for the
training set and predicted values of the test set compounds.
The advantages of such consideration are: (1) Unlike
external validation parameters (R2

pred etc.), the rm
2
(overall)

statistic is not based only on a limited number of test set
compounds. It includes prediction for both test set and
training set (using LOO predictions) compounds. Thus, this
statistic is based on prediction of comparably large number
of compounds. In many cases, test set size is considerably
small and regression based external validation parameter
may be less reliable and highly dependent on individual test
set observations. In such cases, the rm

2
(overall) statistic may

be advantageous. (2) In many cases, comparable models are
obtained where some models show comparatively better
internal validation parameters and some other models show
relatively superior external validation parameters. This may
create a problem in selecting the final model. The rm

2
(overall)

statistic may be used for selection of the best predictive
models from among comparable models. For the present
QSAR study, we have determined rm

2 values for both
training (based on LOO predicted values) and test sets and
also for the whole set for the reported models and the
results are shown in Table 4.

Model randomization

Further statistical significance of the relationship between
the PPO inhibitory activity and descriptors were checked by
randomization test (Y-randomization) of the models. This
technique ensures the robustness of the model. The values
of dependent variable were randomly scrambled and new
QSAR models were developed keeping the independent
variable matrix unchanged. The randomization tests for the
models have been performed at 99% confidence level. The
test has been done by shuffling the PPO inhibitory activity
values and the average value of the correlation coefficient
(Rr) of random models was calculated. For an acceptable
QSAR model, the average correlation coefficient (Rr) of
randomized models should be less than the correlation
coefficient (R) of non-randomized model. No clear-cut
recommendation was found in the literature for the desired
difference between the average correlation coefficient (Rr)
of randomized models and the correlation coefficient (R) of
non-randomized model. We have used a parameter Rp

2 [42],
which penalizes the model R2 for the difference between
squared mean correlation coefficient (Rr

2) of randomized
models and squared correlation coefficient (R2) of non-
randomized model. The above mentioned novel parameter
can be calculated by the following equation:

R2
p ¼ R2 *

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

r

q
: ð8Þ

Fig. 11 The most active com-
pound (compound 34) within the
MFA grid showing its important
interaction points
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This novel parameter Rp
2 ensures that the models

developed are not obtained by chance. For an acceptable
QSAR model, the value of Rp

2 should be greater than 0.5.
The values of R2, Rr

2 and Rp
2 for different models have

been reported in the Table 4.

Overview and conclusions

In our present paper, we have performed docking of 34
PPO inhibitors reported by Yang et al. [8] into the active
site of PPO enzyme. Also we have done the QSAR studies
with three dimensional (shape, spatial, electronic and
molecular field) descriptors along with a few structural
descriptors. The whole dataset (n=34) was divided into a
training set (75% of the dataset) and a test set (remaining
25%) on the basis of K-means clustering technique. Models
developed from training set compounds were used to
predict the activity of the test set compounds. A comparison
of statistical quality of different models was given in
Table 4. The docking study suggests that in the active site
of the PPO enzyme, important amino acid residues present
are Ile168, Ile311, Ile412, Met365, Ser64, Phe65, Val164
and Asn449. The non-polar amino acid residues (Ile168,
Ile311, Ile412, Met365, Phe65 and Val164) form a
hydrophobic pocket to which the PPO inhibitors bind.
Models generated from molecular shape analysis (MSA)
reflects the importance of structural (Rotlbonds), electronic
(HOMO, LUMO), shape (DIFFV) and spatial (RadofGyra-
tion, Jurs_FPSA_2, Jurs_WPSA_3, Shadow_nu and PMI_-
mag) descriptors. Molecular field analysis (MFA) suggests
the importance of probes (H+, CH3, CH3

-) at definite
locations. Among the models generated by MSA, the model
derived from the docked conformers is better than that

developed by conformational analysis because the former is
statistically more robust. According to the internal variance
(Q2=0.813), equation M3 is the best one. However, when
we consider the external predictive variance, equation M2a
(R2

pred=0.762) is the best one. To avoid this type of
contradiction, we have developed a novel parameter
(r2m(overall)) [41]. Again, according to the r2m(overall) Eq. M3
(0.771) is the best one. According to the newly introduced
parameter (Rp

2), also Eq. M3 (0.834) is the best one.
Docking studies suggest that the molecules bind with a

hydrophobic pocket of the enzyme formed by some
nonpolar amino acid (Ile168, Ile311, Ile412, Met365,
Phe65 and Val164) residues. The co-enzyme FAD plays a
major role in the receptor binding of the inhibitors. The
inhibitors form hydrogen bonds to bind properly with the
enzyme. However, steric bumps have a detrimental effect
on the PPO inhibition activity. As compounds 10, 30, 32
have formed bumps either intermolecular or intramolecular,
their PPO inhibitory activity is lower. The quantum
chemical descriptor LUMO suggests that, for better herbi-

Table 4 Comparison of statistical quality parameters and validation parameters of the models

Eq. no. Type of
descriptors

Model
Type

Model quality Internal validation
parameter

External
validation
parameters

Overall
validation
parameter

Model
randomization

R2 Ra
2 F s Q2 PRESS r2

m(LOO)

R2
pred r2

m(test)

r2m(overall) R2
r* R2

p

M1 Shape + Spatial +
Electronic + Structural

GFA-
linear#

0.801 0.749 15.3 0.482 0.606 8.757 0.450 0.767 0.797 0.533 0.187 0.628

M1a Shape + Spatial +
Electronic + Structural

PLS-linear# 0.761 0.713 16 0.515 0.545 10.120 0.473 0.601 0.758 0.537 – –

M2 Shape + Spatial +
Electronic + Structural

GFA-
lineara

0.829 0.784 18.4 0.447 0.628 8.259 0.477 0.788 0.750 0.562 0.182 0.667

M2a Shape + Spatial +
Electronic + Structural

PLS-lineara 0.829 0.795 24.3 0.436 0.668 7.369 0.574 0.762 0.737 0.656 – –

M3 Molecular field descriptors G/PLS-
lineara

0.890 0.874 56.4 0.342 0.813 4.152 0.788 0.726 0.734 0.771 0.012 0.834

* Squared mean R for random models
# Using conformers generated by conformational analysis
a Using docked conformers

Table 5 External validation criteria according to Golbraikh and
Tropsha [39] of all the models

Equation
no.

Model type r2 Q2 (r2-
r0
2)/r2

k

M1 GFA-undocked 0.864 0.606 0.007 0.941

M1a PLS-undocked 0.776 0.545 0.0007 0.922

M2 GFA-docked 0.833 0.628 0.012 0.955

M2a PLS-docked 0.836 0.668 0.017 0.947

M3 G/PLS-docked
(MFA)

0.758 0.813 0.001 0.952
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cidal activity the molecules should be highly electrophilic.
However, another electronic descriptor (HOMO) also
shows positive contribution. So, there must be a balance
between HOMO and LUMO energies, i.e. electrophilic and
nucleophilic characters of the inhibitors. The charged surface
area descriptors suggest that, the positive charge distributed
over a large surface area may enhance the activity. The
spatial descriptors show that, for better activity the molecules
should have symmetrical shape in all directions in a 3D
space. Molecular field probes suggest that an increase in
steric volume may enhance the herbicidal activity. The
position of the R1 substituent may affect the PPO inhibition
activity. Due to this reason the activity of the B series
compounds is quite lower than the others. Instead of triazin-
4-one ring system, tetrahydroisoindole-1,3-dione ring struc-
ture may enhance (compound 34) the PPO inhibition
activity. The results of our present study may be useful for
the design and development of novel compounds having
better PPO inhibitory activity against the unwanted herbs
and weeds which reduce agricultural productivity.

Acknowledgments Financial assistance from the Ministry of Hu-
man Resource Development, Govt. of India, New Delhi in the form of
a scholarship to SP is thankfully acknowledged.

References

1. http://en.wikipedia.org/wiki/Weed
2. http://en.wikipedia.org/wiki/Herbicide
3. Yang GF, Huang X (2006) Curr Pharm Design 12:4601–4611
4. Xi Z, Yu Z, Niu C, Ban S, Yang G (2006) J Comput Chem 27

(13):1571–1576
5. Peng H, Wang T, Xie P, Chen T, He H, Wan J (2007) J Agric Food

Chem 55:1871–1880
6. Zhang L, Wan J, Yang G (2004) Bioorg Med Chem 12:6183–6191
7. Wang JG, Li ZM,MaN,Wang BL, Jiang L, Pang SS, Lee YT, Guddat

LW, Duggleby RG (2005) J Comput Aided Mol Des 19:801–820
8. Li HB, Zhu YQ, Song XW, Hu FZ, Liu B, Li YH, Niu ZX, Liu P,

Wang ZH, Song HB, Zou XM, Yang HZ (2008) J Agric Food
Chem 56:9535–9542

9. Hirai K, Uchida A, Ohno R (2002) In: Boger P, Wakabayashi K,
Hirai K (eds) Herbicide Classes in DeVelopment. Springer-Verlag,
Berlin, Heidelberg, pp 255–274

10. Yoshida R, Sakaki M, Sato R, Nagano E, Oshio H, Kamoshita H
(1991) S-53482 A new phthalimide herbicide. Proc Brighton Crop
Protection ConferencesWeeds. BCPC, Farnham, Surrey, UK, pp
69–75

11. Nagano E, Hashimoto S, Yoshida R, Matsumoto H, Kamoshita K
(1987) (Sumitomo Chemical Company) U.S. Patent 4670046

12. Grossmann K, Schiffer H (1999) Pestic Sci 55:687–695
13. Dickmann R, Melgarejo J, Loubiere P, Montagnon M (1997)

Oxadiargyl: A novel herbicide for rice and sugarcane. Proc
Brighton Crop Protection ConferencesWeeds. BCPC, Farnham:
Surrey, UK, pp 51–57

14. Auti K, Trombini A, Giammarusti L, Sbriscia C, Harder H,
Gabard J (1997) Azafenidin: A new low use rate herbicide for
weed control in perennial crops, industrial weed control and
forestry. Proc Brighton Crop Protection ConferencesWeeds.
BCPC, Farnham, Surrey, UK, pp 59–66

15. Van Saun WA, Bahr JT, Crosby GA, Fore ZQ, Guscar HL,
Harnish WN, Hooten RS, Marques MS, Parrish DS, Theodoridis
G, Tymonko JM, Wilson KR, Wyle MJ (1991) F6285-A new
herbicide for the post-emergence selective control of broad-leaved
weeds soybeans. Proc Brighton Crop Protection Conferences-
Weeds. BCPC, Farnham, Surrey, UK , pp 77–82

16. Van Saun WA, Bahr JT, Bordouxhe LJ, Gargantiel FJ, Hotzman
FW, Shires SW, Sladen NA, Tutt FS, Wilson KR (1993) F8426-A
new rapidly acting, low-rate herbicide for the postemergence
selective control of broad-leaved weeds in cereals. Proc Brighton
Crop Protection ConferencesWeeds. BCPC, Farnham, Surrey, UK,
pp 19–22

17. Zhu YQ, Wu C, Li HB, Zou XM, Si XK, Hu FZ, Yang HZ (2007)
J Agric Food Chem 55:1364–1369

18. Kirkpatrick P (2004) Nature Rev Drug Disc 3:299
19. Discovery Studio 2.1 is a product of Accelrys Inc, San Diego, CA,

USA
20. Cerius2 Version 4.10 is a product of Accelrys Inc, San Diego, CA,

USA
21. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM

(2003) Env Health Perspect 111:1361–1375
22. Guha R, Jurs PC (2005) J Chem Inf Model 45:65–73
23. Leonard JT, Roy K (2006) QSAR Comb Sci 25:235–251
24. Roy K (2007) Expert Opin Drug Discov 2:1567–1577
25. Everitt B, Landau S, Leese M (2001) Cluster analysis. Arnold,

London
26. Dougherty ER, Barrera J, Brun M, Kim S, Cesar RM, Chen Y,

Bittner M, Trent JM (2002) J Comput Biol 9:105–126
27. Hopfinger AJ, Tokarsi JS (1997) Three-dimensional Quantitative

structure activity relationship analysis. In: Charifson PS (ed)
Practical Applications of Computer-Aided Drug Design. Dekker,
New York, pp 105–164

28. Hirashima A, Eiraku T, Kuwano E, Eto M (2003) Internet
Electron J Mol Des 2:511–526

29. Rogers D, Hopfinger AJ (1994) J Chem Inf Comput Sci 34:854–866
30. Wold S (1995) PLS for Multivariate Linear Modeling. In: van de

Waterbeemd H (ed) Chemometric methods in molecular design.
VCH, Weinheim, pp 195–218

31. Fan Y, Shi LM, Kohn KW, Pommier Y, Weinstein JN (2001) J
Med Chem 44:3254–3263

32. Roy PP, Leonard JT, Roy K (2008) Chemom Intell Lab Sys
90:31–42

33. Kubinyi H, Hamprecht FA, Mietzner T (1998) J Med Chem
41:2553–2564

34. Marshall GR (1994) Binding-Site nmodeling of unknown recep-
tors. In: Kubinyi H (ed) 3D QSAR in Drug Design—Theory,
Methods and Applications. ESCOM, Leiden, pp 117–133

35. Deswal S, Roy N (2006) Eur J Med Chem 11:1339–1346
36. MINITAB is a statistical software of Minitab Inc, USA
37. SPSS is a statistical software of SPSS Inc, Chicago, IL
38. Chem 3D Pro version 5.0 program of CambridgeSoft Inc,

Cambridge, USA
39. Golbraikh A, Tropsha A (2002) J Mol Graphics Mod 20:269–276
40. Roy PP, Roy K (2008) QSAR Comb Sci 27:302–313
41. Roy PP, Roy K (2008) Chem Biol Drug Des 72:370–382
42. Roy K, Paul S (2009) QSAR Comb Sci 28:406–425

J Mol Model (2010) 16:137–153 153

http://en.wikipedia.org/wiki/Weed
http://en.wikipedia.org/wiki/Herbicide

	Docking and 3D QSAR studies of protoporphyrinogen oxidase inhibitor 3H-pyrazolo[3,4-d][1,2,3]triazin-4-one derivatives
	Abstract
	Introduction
	Materials and methods
	Docking
	Descriptors
	Cluster analysis
	Molecular shape analysis
	Molecular field analysis
	Genetic function approximation-multiple linear regression
	Partial least squares
	G/PLS
	Validation methods
	Software

	Results and discussion
	Docking
	Molecular shape analysis
	Molecular field analysis
	Additional test on external validation
	Model randomization
	Overview and conclusions

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


